MME Mathematical Models in Engineering

Aims and Scope

MME publishes mathematical results which have relevance to engineering science and technology. Formal descriptions of mathematical models related to engineering problems, as well as results related to engineering applications are equally encouraged.

Applications of mathematical models in financial engineering, mechanical and aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, nonlinear science and technology are especially encouraged.

Mathematical models of interest include, but are not limited to, ordinary and partial differential equations, nonlinear analysis, stochastic processes, calculus of variations, operations research.

All published papers are peer reviewed and crosschecked by plagiarism detection tools.

More information is available online https://www.jvejournals.com

The journal material is referred:

EBSCO: Discovery Services (Complementary Index)
GALE Cengage Learning: Academic OneFile Custom Periodical;
Computer Database;
Science in Context.
DIRECTORY OF OPEN ACCESS JOURNALS (DOAJ): https://doaj.org
SEMANTIC SCHOLAR: https://www.semanticscholar.org
GOOGLE SCHOLAR: https://scholar.google.com
CNKI SCHOLAR: http://eng.scholar.cnki.net
JGate: https://jgateplus.com
1findr: https://1findr.lscience.com
ULRICH'S PERIODICALS DIRECTORY: https://ulrichsweb.serialssolutions.com
BASE (Bielefeld Academic Search Engine): https://www.base-search.net
CORE: https://core.ac.uk
cnpLINKer (CNPIEC): http://cnplinker.cnpeak.com
MIAR, Universitat de Barcelona: http://miar.ub.edu
JournalTOCs: http://www.journaltoocs.ac.uk
CROSSREF: https://www.crossref.org
Internet: https://www.jvejournals.com
E-mail: publish@jvejournals.com
Publisher: JVE International Ltd., Géliu rata 15A, LT-50282, Kaunas, Lithuania
Contents

HYBRID EXTRACTION OF MULTI-WORD TERMS: AN APPLICATION ON VIBRATION-BASED CONDITION MONITORING TECHNIQUE
Konstantinos Chatzitheodorou, Vassilios Kappatos
1

FORCED VIBRATIONS OF VIBRO IMPACT SYSTEM WITH ZERO TIGHTENING WITH HARMONIC RESONANT EXCITATION
K. Ragulskis, L. Ragulskis
10